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Abstract--Modelling of hangingwall deformation, during extension or compression, may be achieved using a 
finite difference approach. Under the assumption of incompressible flow, equivalent to area balancing; this 
method enables calculation of a particle velocity field giving the trajectory of any point in the hangingwall during 
deformation. This technique is more flexible than graphical algorithms because it is not restricted to simple shear 
cases. Inputs to the algorithm are the bounding fault and the particle displacement directions. Simple examples 
are used to illustrate the method. 

INTRODUCTION 

MATHEMATICAL modelling of hangingwall deformation 
above a fault surface, during extension or compression, 
is an important problem in structural geology. Many 
investigators have developed methods based upon 
graphical techniques (Verrall 1982, Gibbs 1983, 1984, 
Davison 1986, White et al. 1986, Williams & Vann 1987, 
White 1988). These papers have been concerned with 
the forward problem of predicting deformation patterns 
and also the inverse problem of deriving fault geometry 
from observed deformation geometries. These 
approaches differ in their methods of accommodating 
deformation, e.g. vertical simple shear models (Verrall 
1982, Gibbs 1983, 1984) and inclined simple shear mod- 
els (White et al. 1986). However, recent work indicates 
that, in analogue models, deformation is more complex 
than these techniques allow (Ellis & McClay 1988, fig. 
17). 

This paper presents a forward modelling technique 
which can be applied to any form of incompressible 
deformation. The method is based upon finite difference 
solution of a partial differential equation, an approach 
familiar to programmers of seismic migration algorithms 
(Claerbout & Doherty 1972, Gazdag 1978, Berkhout 
1981, Claerbout 1985). The general approach is to find a 
partial differential equation which must be satisfied by 
all forms of incompressible hangingwall deformation. A 
suitable partial differential equation is derived below. 
The problem then reduces to finding the particular 
solution corresponding to the situation being modelled. 
The finite difference method for finding such a solution 
is outlined in the third and fourth section. Finally, 
examples of its use are given. 

THE GOVERNING EQUATION 

Hangingwall deformation is completely described by 
a velocity field together with a deformation time. The 
velocity field gives the rate and direction of displacement 

for a particle at any point in the hangingwall. For 
example, a particle at the point A in Fig. 1 is displaced, 
during deformation, to the point B and, at the inter- 
mediate point (x, y), this particle moves at a displace- 
ment rate v(x, y) in a direction O(x, y) to the horizontal. 
These two quantities are more simply represented by the 
velocity vector v(x, y). This velocity field can be time 
dependent so that the path followed by a particle will not 
necessarily be the same as that of another particle 
occupying the same location at a different time. 

The primary assumption of this paper is that of 
'volume balancing', i.e. the material comprising the 
hangingwall is considered to be incompressible. The 
technique will therefore be inappropriate if significant 
compaction has occurred. The velocity field for motion 
of an incompressible 'fluid' must be solenoidal (Birkoff 
1955, Hughes & Brighton 1967), i.e. 

V.v = 0. (1) 

This condition ensures that the volume of material enter- 
ing any fixed volume of space is equal to the volume of 
material leaving. For the case of a two-dimensional 
velocity field, equation (1) may be given in the form 

av/ax + aVy/ay = o. (2) 

Equation (2), being two-dimensional, will conserve the 
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x fault 

Fig. 1. Particle displacement geometry. During deformation, a 
particle at A in the hangingwall moves to the point B along the 
trajectory shown. At the intermediate point (x, y) this particle moves 
at a rate v in a direction 0 to the horizontal. Thus, every point in the 
hangingwall has an associated displacement rate, v, and displacement 

direction, 0. 
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areas of beds rather than their volumes and so gives rise 
to an area balancing technique. Now, it is more con- 
venient to describe the velocity field, v, in terms of its 
amplitude, v, and direction, 0, using 

v x = v cos (0) (3) 

Vy = v sin (0). (4) 

Equation (2) can then be rewritten as 

Ov/ax + tan (0) Ov/Oy = v(tan (0) O0/Ox - O0/Oy). (5) 

This is the equation used in the finite difference 
algorithm developed in the next section. 

Now, equation (5) is linear in v. The importance of 
this is that, for a given displacement direction field 
O(x, y ) ,  the deformation will depend only upon the total 
extension, or compression, and not upon the rate at 
which it is achieved. In practice O(x, y )  will depend upon 
the strain rate and so the deformation geometry will 
differ according to the deformation rate. Nevertheless, 
this linearity will prove useful in the next section. 

T H E  D I F F E R E N C E  E Q U A T I O N  

Thus far, 0 and v have been treated as continuous 
functions of position. However, the finite difference 
solution gives these quantities only at discrete points on 
an x - y  grid (see Fig. 2). This grid has m points in the 
x-direction and n points in the y-direction with sample 
intervals d x  and dy, respectively. To simplify the nota- 
tion, the grid locations will be specified by subscripts for 
the x-location and superscripts for the y-location. 
Hence, v( i6x ,  j d y )  is denoted ~. The object of the finite 
difference algorithm is to calculate all the ~ and ~-. 

Thus, this algorithm has two parts. First, the displace- 
ment directions, ~,  are given, this aspect is considered in 
the next section. Secondly, the displacement rates are 
calculated by finding a column of unknown displacement 
rates, v~+ l, V~+l . . . . .  ~+x using the preceding column of 

" The displacement displacement rates vl,  v 2 . . . . .  vi.  
rates, vl, v { . . . . .  v'~, in the first column of the finite 
difference grid must therefore be supplied. Fortunately, 
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Fig. 2. Finite difference representation. The quantities v and 0 are 
now only defined at discrete points which are separated by 6x in the 
x-direction and 6y in the y-direction. The values at each node of this 
grid are annotated with a subscript for the x-position of the node and a 

superscript for the y-position of the node. 

because of the linearity already noted, these initial 
values may be set to unity. The deformation time is then 
adjusted to give the correct total extension or com- 
pression. This initial column of points then defines a 
hangingwall pin line (or loose line). 

A simple algorithm for finding the column of unknown 
displacement rates could be devised as follows. The 
derivatives of displacement rate are first estimated from 

(Ov/Ox  = ( G 1  -  )/ox 

(Ov/Oy~ = ( ~ t  _ ~)/Oy. 

These are then substituted into equation (5) to yield 

~+~ = g(1 + [tan (0) bO/bx - OO/Oy]6x/6y 

+ tan (0) 6 x / b y )  - v~ +1 tan (0) 6 x / 6 y .  

Thus ~+~, an element from the column of unknown 
values, is found from knowledge of 0 together with 
and g+~ from the preceding column. Unfortunately this 
algorithm is numerically unstable, it produces very poor 
results and a more complex approach must be used. 
However, the basic idea of estimating the terms in 
equation (5) using values on the finite grid and then 
solving the resultant equation for the unknown ele- 
ments, is still retained. 

To produce numerically stable results the implicit 
finite difference scheme (Crank & Nicoison 1947, 
Claerbout 1985) is used. The crux of this method is that 
all quantities in the differential equation are estimated at 
points half-way between samples in the x-direction, i.e. 
at (i + 1/2)6x,  j6y ,  giving: 

VJ+la = (v{ + vi+0/2 (6) 

(OvlOx){.+w. = (v~+l - v~)ldx (7) 

• " J+~ vi2.1)]/4dy (8) (Ov/OY)i+ll2 = [(V~ +' - v; -1) + I . P i + l -  

plus similar relations for 0. If these estimates are sub- 
stituted into the partial differential equation, equation 
(5), then a set of linear simultaneous equations results. 
These may be expressed in matrix form. the n = 5 
example being 

2 
- - f l i + l / 2  a - -  O ~ + U 2  

0 0 

0 0 

0 

1 
- -  <T/+ t/2 

4 
- - ~ i + 1 / 2  

0 

where 

a = 1/6x 

fl{i+m = tan (0~÷v2)/4 dy  

0 0 

0 0 

~<,,2 0 
4 4 

- -  t7i+1/2 / ~ i  + II2 

5 
- - f l i + l / 2  

~÷t 

b i t  1/2 

a,'. 
a, +. 
d; 

0i+1/2 = [(tan (0) OO/bx - OO/Oy)i+v2]/2 

. . . .  i + 1  d i=f l { .+uzV~71  + ( a -  oi+m) v~ -fl{+v2 v, 

, (9) 
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and the values of a~+tr 2, bi+t/2, d~ and d7 depend upon the 
boundary conditions. In the examples given in this paper 
it is assumed that the displacement rate gradient is zero 

0 v] and ~+l " These at the boundaries, i.e. vi = = vi. 
conditions lead to 

ai+,n = (a - a - fl)]+lr2 (10) 

bi+l/2 = (a - {7 + fl)7+1/2 (11) 

d7 = v7 - t f lT+tn+ v T ( a -  o-f l )7+tl~ (12) 

Hence, all matrix elements, in equation (9), may be 
calculated from the known direction field. In addition, 
the right-hand vector elements are known and thus 
inversion of equation (9) yields the unknown quantities, 
vi+x. Fast algorithms for solving systems of tridiagonal 
equations, such as equation (9), are widely reported in 
the literature (e.g. Claerbout 1985). 

Once the displacement rate and direction have been 
found the deformation is calculated as follows. The 
hangingwall is deformed for a short time, 6t, by 
calculating the displacement of points within it. For 
example, a point at (x, y) moves to (x + vx 6t, y + Vy 60. 
This procedure is repeated N times, where N 6t equals 
the total time for which deformation occurs. This defor- 
mation time is calculated from the total extension, or 
compression, assuming unit displacement rate for the 
pin line. The time increment, 6t, should be sufficiently 
small that the particle's true curved trajectory is closely 
approximated by the resultant set of straight line seg- 
ments. The speed of the algorithm is largely controlled 
by the velocity field calculation and is not therefore 
significantly improved by using a larger time step. Note 
that a particle moving along a trajectory during deforma- 
tion will not necessarily sit exactly at a point on the finite 
difference grid, at any given moment, but will lie at an 
intermediate position. Thus, calculation of the particle 
trajectory will require interpolation of the velocity field 
found by the finite difference technique. 

THE DIRECTION FIELD 

It has been assumed that the directions, 2, are known. 
Hangingwall deformation will be controlled by this dis- 
placement direction field which is constrained only by 
the requirement that displacement be parallel to the 
bounding fault at points close to the fault. Some simple 
direction fields which obey this constraint will now be 
discussed. 

The simplest assumption is to make displacement 
direction parallel to the fault dip vertically beneath the 
point in question. This is vertical simple shear which 
gives the same results as those from the simplest 
graphical techniques (e.g. Verral11982). 

Alternatively, the directions can be parallel to the 
fault in some non-vertical direction. This is the inclined 
simple shear assumption and will give results equivalent 
to those of White et al. (1986). 

A different way of viewing these direction fields is to 
consider the corresponding displacement isogons (see 

0 ° 20 ° 40 ° 60 ° 80 ° 
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Fig. 3. Displacement direction isogons. Each contour joins points of 
equal displacement direction. These displacement directions must be 
parallel to the fault for points on the fault. This is indicated for the 60* 

isogon. 

Fig. 3). Displacement isogons are contours of the dis- 
placement direction, i.e. lines joining points with equal 
values for 0. Vertical simple shear corresponds to 
isogons which are vertical straight lines whilst inclined 
simple shear has inclined straight isogons. In general, 
the isogons can have any curved non-intersecting form, 
the value of 0 on any isogon being equal to the fault dip 
at the intersection of isogon and fault. This approach 
suggests a more sophisticated assumption for 0 in which 
the dip of the isogons depends upon depth. Alterna- 
tively, the isogon dip could depend upon the materials 
comprising the hangingwall. For an inhomogeneous 
hangingwall the direction field would then have to be 
recalculated after each increment of displacement. 

SIMPLE EXAMPLES 

Figure 4 illustrates a simple example of the use of this 
algorithm. The hangingwall has been moved by 4.5 km 
above a simple listric detachment. The pre-rift sediments 
in this hangingwall are represented by a 0.5 km square 
grid of points which was successively deformed by exten- 
sion in increments of 100 m (N.B. this grid of points is 
not related to the finite difference grid already 
discussed). Syn-rift deposits are represented by 
introducing a new horizontal layer of points after every 
1 km of extension. A direction field was used in which 
the isogons were assumed to be straight lines dipping by 
20* anticlockwise from vertical. 

This example illustrates well the simulation of features 
such as a roll over geometry and wedge shaped growth 
intervals in the syn-rift sediments. It also shows that area 
balancing can produce elongation of the pre-rift 
sediments and that this algorithm does not reproduce 
faulting. 

Figure 5 shows uniform extension on a ramp/fiat style 
fault. The hangingwall pin line has been moved a total of 
6 km. Pre-rift sediments are here represented by a 1 km 
square grid of points and the syn-rift sediment layers 
have been deposited after each 0.5 km of extension. The 
direction field again used 20* dipping isogons. 

In addition to the features observed in Fig. 4, this 
example shows a hangingwall syncline and an unfolding 
roll over in the syn-rift layers giving rise to a prograding 
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Fig. 4. Simple listric example after 4.5 km of extension. The distorted grid represents pre-rift sediments. Syn-rift sediments 
-have been represented by introducing a line of points at the surface after each 1 km of extension. 

appearance. The apparent faulted structure in the syn- 
rift deposits is actually a locus of points which have 
passed through x ~ 14 km, z - 0 km which is a point of 
low displacement rate. Consequently the syn-rift layers 
are very close to one another at these points. 

DISCUSSION 

A hangingwall deformation modelling technique has 
been presented which allows any form for the particle 
displacement directions. Thus, great flexibility in 
attempting to model true geological situations is 
possible. Simple examples have been given which could 
have been produced using simpler graphical techniques, 
but the algorithm is by no means restricted to such cases. 
Further work is now in progress to find and test other 
possibilities, the results of this will be reported in a 
subsequent paper. 

An important facet of this will be the ability to use 
t ime-dependent direction fields since, in practice, defor- 
mation is accommodated by faulting which moves with 

the hangingwall. Time-independent  modelling, on the 
other hand, produces deformation in a manner which is 
stationary with respect to the footwall. Thus. an ideal 
modelling scheme must allow the direction field to 
evolve as deformation proceeds. 

An aspect not considered in this paper is that of 
modelling in three dimensions. Equation (1) however is 
a full three-dimensional statement. Thus, in principle, 
the techniques presented here should extend to three 
dimensions although the practical problems will not be 
trivial. 

A further aspect not considered here is the problem of  
estimating fault geometry from known hangingwatl 
deformation,  i.e. the inverse problem. This is related to 
the problem of estimating the displacement directions 
rather than assuming them. Thus, at present the only 
method available would be to adapt iteratively a forward 
model until it gave results consistent with the known 
deformation. There would then be a serious problem of 
non-uniqueness, a problem avoided with graphical 
techniques because of their extremely restricted choice 
of direction fields. 
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Fig. 5. Ramp/flat controlling fault with 6 km of extension. Syn-rift points have been deposited every 0.5 km in this example. 
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